5,760 research outputs found

    Magnetoelectric properties of 500 nm Cr2O3 films

    Get PDF
    The linear magnetoelectric effect was measured in 500 nm Cr2O3 films grown by rf sputtering on Al2O3 substrates between top and bottom thin film Pt electrodes. Magnetoelectric susceptibility was measured directly by applying an AC electric field and measuring the induced AC magnetic moment using superconducting quantum interference device magnetometry. A linear dependence of the induced AC magnetic moment on the AC electric field amplitude was found. The temperature dependence of the magnetoelectric susceptibility agreed qualitatively and quantitatively with prior measurements of bulk single crystals, but the characteristic temperatures of the film were lower than those of single crystals. It was also possible to reverse the sign of the magnetoelectric susceptibility by reversing the sign of the magnetic field applied during cooling through the N\'eel temperature. A competition between total magnetoelectric and Zeeman energies is proposed to explain the difference between film and bulk Cr2O3 regarding the cooling field dependence of the magnetoelectric effect.Comment: accepted at Physical Review

    Ac conductivity and dielectric properties of CuFe1−xCrxO2 : Mg delafossite

    Get PDF
    The electrical and dielectric properties of CuFe(1−x)Cr(x)O(2) (0 ≤ x ≤ 1) powders, doped with 3% of Mg and prepared by solid-state reaction, were studied by broadband dielectric spectroscopy in the temperature range from −100 to 150 °C. The frequency-dependent electrical and dielectric data have been discussed in the framework of a power law conductivity and complex impedance and dielectric modulus. At room temperature, the ac conductivity behaviour is characteristic of the charge transport in CuFe1−xCrxO2 powders. The substitution of Fe3+ by Cr3+ results in an increase in dc conductivity and a decrease in the Cu+–Cu+ distance. Dc conductivity, characteristic onset frequency and Havriliak–Negami characteristics relaxation times are thermally activated above −40 °C for x = 0.835. The associated activation energies obtained from dc and ac conductivity and from impedance and modulus losses are similar and show that CuFe1−xCrxO2 delafossite powders satisfy the BNN relation. Dc and ac conductivities have the same transport mechanism, namely thermally activated nearest neighbour hopping and tunnelling hopping above and below −40 °C, respectively

    Renormalization group approach to vibrational energy transfer in protein

    Full text link
    Renormalization group method is applied to the study of vibrational energy transfer in protein molecule. An effective Lagrangian and associated equations of motion to describe the resonant energy transfer are analyzed in terms of the first-order perturbative renormalization group theory that has been developed as a unified tool for global asymptotic analysis. After the elimination of singular terms associated with the Fermi resonance, amplitude equations to describe the slow dynamics of vibrational energy transfer are derived, which recover the result obtained by a technique developed in nonlinear optics [S.J. Lade, Y.S. Kivshar, Phys. Lett. A 372 (2008) 1077].Comment: 11 page

    RF amplification property of the MgO-based magnetic tunnel junction using field-induced ferromagnetic resonance

    Full text link
    The radio-frequency (RF) voltage amplification property of a tunnel magnetoresistance device driven by an RF external-magnetic-field-induced ferromagnetic resonance was studied. The proposed device consists of a magnetic tunnel junction (MTJ) and an electrically isolated coplanar waveguide. The input RF voltage applied to the waveguide can excite the resonant dynamics in the free layer magnetization, leading to the generation of an output RF voltage under a DC bias current. The dependences of the RF voltage gain on the static external magnetic field strength and angle were systematically investigated. The design principles for the enhancement of the gain factor are also discussed.Comment: 12 pages, 3 figure

    Two dimensionality in quasi one-dimensional cobalt oxides

    Full text link
    By means of muon spin rotation and relaxation (μ+\mu^+SR) techniques, we have investigated the magnetism of quasi one-dimensional (1D) cobalt oxides AEn+2AE_{n+2}Con+1_{n+1}O3n+3_{3n+3} (AEAE=Ca, Sr and Ba, nn=1, 2, 3, 5 and \infty), in which the 1D CoO3_3 chain is surrounded by six equally spaced chains forming a triangular lattice in the abab-plane, using polycrystalline samples, from room temperature down to 1.8 K. For the compounds with nn=1 - 5, transverse field μ+\mu^+SR experiments showed the existence of a magnetic transition below \sim100 K. The onset temperature of the transition (TconT_{\rm c}^{\rm on}) was found to decrease with nn; from 100 K for nn=1 to 60 K for nn=5. A damped muon spin oscillation was observed only in the sample with nn=1 (Ca3_3Co2_2O6_6), whereas only a fast relaxation obtained even at 1.8 K in the other three samples. In combination with the results of susceptibility measurements, this indicates that a two-dimensional short-range antiferromagnetic (AF) order appears below TconT_{\rm c}^{\rm on} for all compounds with nn=1 - 5; but quasi-static long-range AF order formed only in Ca3_3Co2_2O6_6, below 25 K. For BaCoO3_3 (nn=\infty), as TT decreased from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table
    corecore